
PARALLEL PROCESSORS AND
NONLINEAR STRUCTURAL DYNAMICS ALGORITHMS AND SOFTWARE

Principal Investigator: Ted Belytschko

Department of Civil Engineering
Northwestern University

Evanston, Illinois 60208-3109

Semiannual Progress Report

March 1, 1988 though August 31, 1988

NASA Research Grant NAG-1-650

Vectorized, Concurrent Finite Element Program

1 Introduction

A nonlinear structural dynamics finite element program has been developed to run on

a shared-memory multiprocessor with pipeline processors. The program WHAMS [11

was used as a framework for this work. The program employs explicit time integration

and has the capability to handle both the nonlinear material behavior and large

displacement response of three dimensional structures. The elasto-plastic material

model, described in [2], uses an isotropic strain hardening law which is input as

a piecewise linear function. Geometric nonlinearities are handled by a corotational

formulation in which a coordinate system is embedded at the integration point of each

element. Currently, the program has an element library consisting of a beam element

based on Euler-Bernoulli theory and triangular and quadrilateral plate elements based

on Mindlin theory. . ‘t

1

2

2 Explicit Finite Element Formulation

2.1 Finite Element Equations

The equations of motion for a structural system are given by:

where,

M = global mass matrix,

a = nodal accelerations,

fint = assembled internal nodal forces,

fezt = assembled external nodal forces.

The mass matrix is assumed to be diagonal and lumped so that the system equa-

tions are uncoupled. The internal nodal force is computed on the element level by

f;nt = Le BT ue d R

and then assembled by

fint = e Le= f;ent (3)

3

where,

element internal nodal force,

domain of the element,

gradient matrix,

Cauchy stress matrix,

Boolean connectivity matrix.

Equation 3 gives the assembly of the element internal nodal forces into the global

array. The array Le is never computed; instead the operation indicated by Eqn. 3 is

implemented by simply adding the entries of the element array into the appropriate

locations in the global array as described in Section 3.2.

The element stresses are computed from the corotational components of the ve-

locity strain d given by

where the superposed 'hat' signifies components expressed in terms of the base vectors

of the corotational coordinate system. The velocity at any point in the plate is given

by Mindlin theory as

V = V ~ - ; e , X O (5)

4

where,

urn = velocity of plate midsurface,

i = distance from midsurface,

e3 = base vector perpendicular

to plane of plate,

8 = angular velocity.

Once the corotational components of the velocity strain have be computed, the

appropriate constitutive law can be applied to calculate the element stresses.

2.2 Time Integration

The following central difference equations are used to update the nodal velocities and

displacements in time. Note that an average time step is used to update the velocities.

This allows for the capability of changing the time step during the problem solution.

.

5

where,

u, v, a = nodal acceleration, velocity and

displacement, respectively,

Atn = time increment for step n.

The superscripts in the above equations designate time steps. The fractional

superscripts indicate a midstep value. An outline of the explicit time integration

scheme is given below.

Flow Chart for Explicit Integration

1. Initial conditions : v-4, zo

2. Compute external force

3. Compute internal force vector f;:’

Loop over element blocks

(a) compute velocity strains

dn+f = ~ ~ n + f

(b) compute frame invariant stress rates

(7)

vn+f
u = S (a , d)

c

6

(c) convert frame invariant rate to time derivative of Cauchy stress

. n + f
g = g - W . u " + j + g " + : . W

(d) update stress
. n+f

= a"+ A t u

(9)

(e) compute element internal nodal force : Eqn. 2

(f) assemble into global array

4. Compute accelerations by equation of motion : Eqn. 1

5 . Update velocities and clisplacements using central difference equations: Eqn. 6

6. Go to 2.

REMARK: In Eqn. 8, is a frame invariant rate such as the Jaumann rate and

W is the spin tensor.

2.3 Evaluation of Critical Time Step

For explicit problems, the time step is calculated based on a numerical stability

criterion. The critical time step for a undamped linear system of equations updated

using central difference equations is given by [3]:

2
Wmax

Atc7 = -

7

where w,,, is the maximum frequency of the system

KU = XMU

where,

(13)
2

= wmaz

The element eigenvalue inequality theorem states that the maximum absolute system

eigenvalue is bounded by the maximum element eigenvalue, i.e.,

where,

X = maximum system eigenvalue,

and,

XE,,, = maximum A, for all elements.

The maximum frequency for a one dimensional rod element with linear displacements

and diagonal mass can be easily calculated as 2c/k where c is the dilatational wave

speed and 1 is the length of the element. The critical time step for the element is

l / c . Physically, this time step corresponds to the amount of time required for a

stress wave to traverse stress dimension of the element. Therefore, the critical time

step for explicit time integration is calculated based on the dimensions and material

8

properties of the element with the largest frequency. The critical time step decreases

as the size of the element decreases.

Frequencies for the bending, shear and membrane response of the 4-node Mindlin

plate element are presented in [4, 51 and summarized below. The critical time step of

the element corresponds to the largest of the computed frequencies.

Bending:
1

Wmax = p A h a

Membrane:

Shear:

9

where,

and,
1

R3 = (R: - 4 R p

The stability analysis performed to estimate the critical time step is based on a

linear system of equations. However, experience has shown that a linearized analysis

provides good estimates of the stable time step. For nonlinear problems, the critical

time step is reduced 5% to 10% to compensate for potential destabilizing effects due

to nonlinearities. In addition, an energy balance is performed for every time step in

order to monitor the stability of the system.

3 Vectorization

3.1 Compiler Vectorization

When compiling a program on a computer with vector processors, options are avail-

able for automatic vectorization. The compiler will attempt to vectorize each do-loop

in the program. Compilers differ in their ability to vectorize programming constructs

10

such as IF statements in loops. However, current compilers will not vectorize do-loops

which contain any of the following statements:

1. Data dependencies

2. Ambiguous subcripts

3. Certain IF statements such as

(a) block IF, ELSE, ENIDIF with nesting at a level greater than 3

(b) ELSE IF statements

(c) IF, G O T 0 label outside of loop

4. READ or WRITE statements

5 . Subroutine calls

The compiler will usually issue an explanation if it is unable to vectorize the do-loop.

Additional details about vectorization can be found in [6] .

In order to maximize the benefits of vectorization, modifications to the program

are frequently required. In many cases, minor changes are sufficient to enable a do-

loop to vectorize or to improve the efficiency of the do-loop. The following examples

illustrate two typical situations in which an existing do-loop can be easily modified

for efficient vectorization. -

In nested do-loops, only the innermost do-loop will vectorize. Therefore, the inner

do-loop should have the largest range of indicies. If this is not the case, the inner

11

and outer loops can sometimes be interchanged without affecting the calculations. If

the range of the inner do-loop is sufficiently small, the inner loop can be “unrolled,”

thus allowing the outer do-loop to vectorize. In the following do-loop, the compiler

will attempt to vectorize the inner loop, leaving the remaining calculations to be

performed in scalar mode.

DO 10 I = 1,1000

(o t h e r c a l c u l a t i o n s)

A(1) = 1*1
DO 10 K = 1,3

A(1) = A(1) + B (K)
10 CONTINUE

Unrolling the inner do-loop allows all calculations to vectorize.

DO 10 I = 1,1000‘

(o t h e r c a l c u l a t i o n s)

A(1) = 1*1
A (1) = B (1) + B (2) + B(3)

10 CONTINUE

Programming techniques are frequently different for vectorized codes than for

scalar codes. For scalar programs, efficient coding consists of minimizing the number

of calculations performed. In a vectorized code, it is more important to retain the

vector structure of the computations. For example, in the following scalar loop, it

is worthwhile to use an IF statement to check whether the component of .4 is equal

to zero and if it is, omit the computation. A GO TO statement avoids unnecessary

calculations.

DO 10 I = 1,1000
IF (A(1) .EQ. 0.0) GO TO 10
D(1) = D(I) + A(I)*C(I)/(I*I)

10 CONTINUE

In a vectorized version of this loop, it is important to eliminate the IF statement to

preserve vectorization.

Suppose that the IF statement in the above example read

IF (A(1) .GE. 3.2*B(I)) GO TO 10

It is no longer possible to simply remove the IF statement. Some compilers will

vectorize this type of do-loop by doing a gather/scatter operation on the vector A. In

gather/scatter, the compiler creates a temporary array which contains all values of

A(1) less than 3.2 times B(1) and computes the update on D(1) only for this subset of

A. If the compiler does not have a gather/scatter capability, it is possible to maintain

vectorization by defining a temporary vector for the calculation.

DO 10 I = 1,1000
TEMP(1) = A(1)

10 CONTINUE

DO 20 I =1,1000
IF (A(1) .GE. 3.2*B(I)) TEMP(1) = 0.0

20 CONTINUE

DO 30 I = 1,1000
D (1) = D(1) + TEMP(I)*C(I)

30 CONTINUE

13

In the preceding loops, only the first and third loops will vectorize for compilers

without gather/scatter capabilities. The first loop is overhead required to retain vec-

torization in the third loop. The second loop is performed in scalar mode. Although

this example is rather trivial, the technique can be quite useful for vectorizing many

types of loops. As will be discussed in the section on concurrency, creating temporary

arrays also helps minimize memory contention problems inherent in shared-memory

multiprocessors.

Minor modifications, such as those presented above, will yield moderate improve-

ments in speed-up due to vectorization. However, in order to best exploit the vec-

torization capabilities of the computer, it is frequently necessary to restructure the

flow of the program by replacing calculations for a single element or node by loops

which perform the calculations for a group of elements or nodes. This restructuring

is discussed in the following section.

3.2 Vectorization of Internal Nodal Force Array

One way to approach the vectorization of a large program is to determine which por-

tions of the code require the most computational time. The longer the computational

time, the more effort should be devoted to vectorization. For an explicit finite ele-

ment program, a large majority of the time is consumed by the computation of the

internal nodal force vector, f;nt. In the scalar code, the element internal force vector

is calculated and assembled into the global array for one element at a time. Since

the internal force vectors of all elements are independent at a given time step, the

14

internal force calculations are very conducive to vectorization. Instead of performing

the calculations for individual elements, the internal force computation can easily be

vectorized by placing the operations within a loop and performing the calculations

for a block of elements.

The procedure is as follows: The elements are divided into blocks of identical

element type and material model. It does not matter if material properties for each

element are identical as long as the model (;.e., elastic or von Mises elastic-plastic)

is the same. The number of elements placed in each block depends on the length of

the vector registers and certain characteristics such as problem size. The criteria for

selecting block size are discussed later.

Once the elements have been divided into blocks, the scalar calculations can be

transformed to vector calculations by converting scalar variables to arrays and placing

operations in do-loops. For example, trial stresses for an elastic-plastic material model

are computed in scalar mode for one element by:

SNEWl = SOLD1 + SDELl
SNEW2 = SOLD2 + SDEL2
SNEW3 = SOLD3 + SDEL3

In vectorized form, the calculations are modified as:

DO 10 J = 1,NEPB
SNEWl(J) = SOLDl(J) + SDELl(J)
SNEW2(J) = SOLD2(J) + SDEL2(J)
SNEW3(J) = SOLD3(J) + SDEL3(J)

10 CONTINUE

where NEPB is the number of elements in the block. The computed arrays are

stored in common blocks so that they can be accessed by any subroutine. Note

15

that vectorization substantially increases the amount of memory required because

of the large number of arrays that are created. In older computers, the small core

capacity would have significantly limited the size of problems which could run using

a vectorized code. However, recent technological advances have made large memory

cores available and practical, thus eliminating size limitations except for extremely

large problems.

Vectorization is fairly straightforward for many computations, however certain

modifications must be made to exploit vectorization in some algorithms. The cal-

culation of the plastic constitutive equation is an illustration of this situation. In

a scalar code, a trial stress state is computed for the element and compared to the

yield stress. If the element is elastic, the stresses are updated and the subroutine

is exited. However if the element is plastic, additional calculations are required. In

a vectorized code, the same calculations must be performed for all elements in the

block. When a block contains a mixture of elastic and plastic elements, the elastic

elements must perform the plastic calculations without modifying the elastic stresses.

This was accomplished by creating two arrays, KE(NEPB) and KP(NEPB) which in-

dicate whether the element is elastic or plastic (KE = 1 and KP = 0 if the element is

elastic and visa versa if the element is plastic). If all elements are elastic, the stresses

are updated and the plastic calculations are omitted. Otherwise, all elements per-

form the plastic stress calculations and the appropriate stress is stored. The following

coding illustrates the flow of the vectorized calculations of the updated stresses.

C
C COMPUTE TRIAL STRESS STATE

16

C

C
C
C
C
C

10
C
C
C

20

40
C
C
C

C
C
C
C

60

DO 10 J = 1,NEPB
SNEWI(J) = SOLDI(J) +
SNEW2(J) = SOLD2(J) +
SNEW3(J) = SOLD3(J) +

APPLY YIELD CRITERION
IF ELASTIC : KP = 0, KE
IF PLASTIC : KP = 1, KE

SDELl (J)
SDEL2 (J)
SDEL3 (J)

= I
= o

Sl(J) = SQRT(SIGEF2(SNEWl(J),SNEW2(J),SNEW3(J)))
KP(J) = 0.5 + SIGN(O.S,Sl(J) - YIELD(J))
KE(J) = 1. - KP(J)

C 0 NT I NUE

IF ALL ELEMENTS ARE

DO 20 J = 1,NEPB

CONTINUE
RETURN
CONTINUE

IF (KE(J) .EQ. 0)

ELASTIC, RETURN

GO TO 40

COMPUTE PLASTIC STRESS

SPLl(J) = . . .
SPL2(J) = . . .
SPLS(J) = . . .
UPDATE PLASTIC STRESS FOR PLASTIC ELEMENTS AND
ELASTIC STRESS FOR ELASTIC ELEMENTS

DO 60 J = 1,NEPB
SNEWl(J) = KP(J)*SPLl(J) + KE(J)*SNEWl(J)
SNEW2(J) = KP(J)*SPL2(J) + KE(J)*SNEW2(J)
SNEW3(J) = KP(J)*SPLS(J) + KE(J)*SNEW3(J)

CONTINUE

17

REMARK 1: The DO 20 loop will not vectorize because it contains a GO TO

statement to a label outside of the loop.

REMARK 2: Radial return is a particularly simple plasticity algorithm that is

easily vectorized. However, radial return is not readily adapted to plane stress.

Some calculations, such as those containing data dependencies, should not be

vectorized. Most compilers will check for data dependencies and automatically supress

vectorization. However, a compiler directive which prevents vectorization can also be

placed immediately preceding the location where vectorization should be stopped.

Options are available to enforce the directive for a single loop, for the rest of the

subroutine or for the rest of the program. Data dependencies occur frequently when

nodal arrays stored in global memory are updated. For example, after the internal

nodal forces for an element is computed, it must be assembled into the global array. In

vectorized form the assembly procedure for the x-component of the element internal

force is:

DO 10 J = 1,NEPB
FINT(NI(J) + 11 = FINT(NI(J) + 1) + FIX(J)
FINT(N2(J) + I> = FINT(N2(J) + I) + F2X(J)
FINT(N3(J) + 1) = FINT(N3(J) + 1) + F3X(J)
FINT(N4(J) + 1) = FINT(N4(J) + 1) + F4X(J)

10 CONTINUE

18

where,

N1 ,N2,N3,N4 = Shared memory location indices

for local nodes 1,2,3 and 4,

FINT = Global internal nodal force vector,

FlX,F2X,F3X,F4X = Internal nodal force increment for

local nodes 1,2,3 and 4 of element J.

If this loop were allowed to vectorized, the pipeline processor will first retrieve

from memory the values of the internal nodal force vector for local node 1 of all

elements in the block. These values are stored in a vector register. The temporary

array F lX, which contains the updates for each node, is added to the internal nodal

force vector. The result is then replaced in global memory. An error would arise when

two elements in a block have the same global node for local node 1. For example,

suppose elements 1 and 3 have global node 35 as their local node 1. The internal

force increment for both element 1 and 3 will be added to the same value of the

internal force of node 35. However, when the updated value for node 35 is returned

to memory, only the contribution from element 3 is saved. The update from element

1 is stored first and then overwritten by the update from element 3. Vectorization

must be prevented in all loops containing updates to nodal variables in the element

internal force calculations. It is not necessary to inhibit vectorization in arrays which

pertain to element variables such as stress, strain and thickness because there will be

no data dependencies among elements in a block.

19

Techniques have been developed to avoid data dependencies when updating arrays

stored in global memory such as the internal force vector discussed above. In [7], an

algorithm is presented which divides elements into blocks based on the criterion that

no two elements in a block share a common node. This algorithm eliminates the

data dependencies in the update of the nodal array and allows the loop to vectorize.

Note, that a gather-scatter operation is still required to update the array because

of the nonconstant stride between entries stored in global memory. Therefore, for a

simple update of a globally stored array, an algorithm eliminating data dependencies

will not yield significant speed-up. However, if the elements of the nodal array are

used for additional computations, such as the matrix multiplication presented in [7],

substantial benefit can be achieved.

4 Concurrency

Concurrency can be implemented using compiler options for all calculations except

for the assembly of the internal force vector. In compiler implementations of vector-

ization and concurrency, loops whose indices exceed the length of the vector registers

will be executed in vector-concurrent mode. However, an effective implementation

of vectorization-concurrency requires reprogramming with monitors which allow the

scheduling of calculations among processors.

Two monitors were used for the parallelization of the code. The askfor monitor

controls the assignment of tasks to the available processes. There are two types of

processes. The master process is created by the operating system and performs all of

20

the scalar operations as well as part of the parallel operations. The slave processes

are created by the master process for parallel computations only. The task assigned

to each process is to compute the internal force vector for one block of elements.

Note that processes involve blocks of elements because of vectorization. Prior to

entering the parallel operations, two macros are called by the master process. The

first, probstart, initializes the task number. The task number refers to the block of

elements to be assigned to a process.

The second macro, create-and-work(NPROCS) creates NPROCS-1 slave processes,

where NPROCS is the number of competing processes. NPROCS also corresponds

to the number of available processors and is an input variable. Each of the slave

processes calls SUBROUTINE WORK, which is the subroutine which invokes the

askfor monitor. The master process then calls SUBROUTINE WORK. Therefore,

NPROCS processes are executing the operations in WORK simultaneously. The cre-

ate-and-work macros is defined by:

define(create-and-work,
[DO 30 I = 1,NPROCS-1

create (SLAVE)
30 CONTINUE

CALL WORK 1)

In SUBROUTINE WORK, the askfor monitor is invoked using the following ex-

pression.

askfor (MO,RC,NPROCS,getsub(I,NBLOCKS,RC),reset)

The master process enters the askfor monitor with SUB = 1, the current task

number. SUB is the shared data and is initialized to 1 by the macro probstart. The

21

macro getprob assigns the task number to the process in the monitor. The subcript

SUB is then incremented and the return code RC is set to 0 indicating a successful

acquisition of the task. The process exits the monitor allowing the next process to

enter. This procedure continues until the incremented subscript exceeds NBLOCKS,

in which case the processes are delayed. When all slave processes are delayed, the

master process exits the monitor operations and returns to the nonparallelized code,

The second monitor used is the lock monitor which is used to protect access

to shared memory. When variables from shared memory are required for parallel

calculations, they are first stored in temporary arrays using a “gather” operation

discussed in Section 3.1. This minimizes memory contention problems encountered

in shared-memory multiprocessors and also benefits vectorization. However, if two or

more processes attempt to access the same memory location simultaneously, an error

will occur. Therefore, the gather operation is placed within a lock monitor and only

one process is allowed to access a particular subset of memory at a time. In other

words, the instruction to access global memory becomes the monitor operation.

A lock is invoked by a lock macro immediately preceding the operation. The locks

are named so that different subsets of memory can be associated with different lock

monitors. Control of the monitor is released after the operation by the unlock macro.

The following example shows the “gathering” of the x-coordinates of the nodes in a

quadrilateral plate element into temporary arrays labeled X1, X2, X3 and X4. The

coordinates of the nodes are stored in shared array AUX and the nodal locators are

stored in local arrays N1, N2, N3 and N4 for nodes 1, 2, 3 and 4, respectively. L1 is

22

the name of the lock which is associated with the memory locations containing the

x-coordinates of all nodes. LL2(NID) is the number of elements in the block assigned

to process NID.

nlock(L1)
DO 10 J = lJLL2(NID)

XI(J,NID) = AUX(N~(J,NID) + 1)
X2(JJNID) = AUX(N2(J,NID) + 1)
X3(J,NID) = AUX(N3(JJNID) + 1)
X4(JJNID) = AUX(N4(JJNID) + 1)

10 CONTINUE
nunlock (L 1)

Several named locks are used; each corresponding to a different component of the

nodal arrays used in the internal force calculations. By applying a lock to each

component, the number of operations within a given lock monitor can be reduced, thus

minimizing slowdown due to the locks. Note that the components of the nodal arrays

are retrieved from global memory only once during the element block calculations.

After they have been stored in temporary arrays, memory contention problems are

eliminated.

Note also that in this example, the one dimensional arrays created for vectorization

have been converted to two dimensional arrays. The added dimension is required to

create a local memory for each process. The askfor monitor assigns an identification

number NID to the process which indicates which process is performing the opera-

tions. The identification numbers range from 1 through the number of competing

processes used in the problem solution. The askfor monitor then assigns a block of el-

ements to each available process. Each process will perform the same calculations for

23

different data. By dimensioning the temporary arrays as TEMP(NEPB,NPROCS)

where NEPB is the number of elements per block and NPROCS is the number of

processes, unique memory is created for each process.

5 Numerical Studies

Numerical studies were made to determine the speed-up possible on a multiprocessor

due to both vectorization and concurrency. For comparisons, three version of the

program were used:

1. the original version of WHAMS run in scalar, serial mode : WHAMO,

2. the original version of WHAMS compiled using full optimization for concurrency

and vectorization : WHAM-OPT

3. the vectorized, parallelized version of WHA1\/IS using both full compiler op-

timization and monitors to control concurrency in the element calculations :

WHAMS-VECPAR.

Three problems were considered:

1. a spherical cap loaded by a uniform pressure;

2. a pressurized containment vessel with a nozzle penetration;

3. an impulsively loaded cylindrical panel.

Results are presented in terms of the total run time for the problem and analyzed

by the speed-up and eficiencyof the program. Speed-up is defined as the ratio of

,

24

the computing time of the program on a serial machine to the computing time on a

parallel machine. The efficiency of the program is defined as the speed-up divided

by the number of processors. Speed-up and efficiency are strongly influenced by the

degree of parallelism and vectorization achieved in the program.

The first problem is the spherical cap shown in Figure 1. The material properties

and parameters are listed in Table 1. The problem has 91 nodes and 7 5 elements and

was run primarily to ensure that the vectorized version of the code gave the same

results as the nonvectorized code. Because the problem is small, the elements were

divided into 8 blocks in order to maximize the benefits of parallelization. However,

with only 10 elements per block, the benefits due to vectorization were diminished.

Table 2 compares the execution times of the three versions of TVHAMS run on the

Alliant FX/8 as well as execution times of WHAMO on the VAX 11/780 and IBM

3033. A speed-up of 11 was achieved by the VECPAR version of WHAMS when

compared with the scalar version WHAMO on the Alliant.

The second problem studied was a pressurized containment vessel with a nozzle

penetration shown in Figure 2. The problem has 344 elements and 407 nodes, and is

subjected to a uniform pressure. The material properties and mesh dimensions are

presented in Table 3 and timings are shown in Table 4.

Comparison of the run times of WHAMO and WHAM-OPT shows that using

compiler optimization for concurrency and vectorization provides a speed-up of almost

three. This is only 3/8 of the speed-up which should be achieved by concurrency

alone. However, by vectorizing the code and using monitors to control parallelism of

8

25

the internal force vector, a total speed-up of 18.7 was achieved.

Three element block sizes were used for the WHAM-VECPAR version of the code

using 1, 4 and 8 processors. Efficiencies due to parallelization were calculated by

comparing run times using multiple processors with those using a single processor.

Using four processors, the efficiencies for 12, 24 and 32 elements per block were

Sl%, 7S% and 77%, respectively. With eight processors, the efficiencies decreased

to 66%, 60% and 51%, respectively. The trend indicates that efficiencies decrease as

the number of processors increase and as the number of elements per block increase.

Note, however, that the efficiency due to vectorization increases as the number of

elements per block increases. Therefore, a trade off exists between optimizing a code

for vectorization and concurrency. These trends will be discussed in further detail in

the next section.

The final problem is a 120 degree cylindrical panel shown in Figure 3 which is

hinged at both ends and fixed along the sides. The panel is loaded impulsively with

an initial velocity of 5650 in/sec over a portion of the shell. An elastic-perfectly plastic

constitutive model was used with four integration points through the thickness. The

material properties are shown in Table 5 . Further details can be found in [SI. Due

to symmetry only half of the cylinder was modeled. Three different uniform mesh

discretizations were used so that the effects of problem size and element block size

could be studied. Table 6 shows the number of elements and nodes for each mesh as

well as time step used and total number of time steps.

26

All mesh discretizations were run using the three versions of WHAMS described

previously. The results are presented in Tables 7 through 9. The VECPAR version

of the program was run using 1,4 and S processors and various element block sizes.

A comparison of run times between the original version of the code, WHAMO, and

the code using compiler optimization, WHAM-OPT, shows a speed-up of approxi-

mately 2.5 for all mesh discretizations. Comparing the original version of the code

with the VECPAR version using eight processors gives speed-ups of 17.4, 24.2 and

26.4 for mesh 1, 2 and 3, respectively. Total speed-ups increase as the problem size

increases.

Full advantage of vectorization on the Alliant FX/8 can be taken by using vectors

of at least 24 elements in length. The optimum vector length is 32 which is the

size of the vector registers. As the number of elements per block increases, the run

times decrease due to vectorization. However, the efficiency attributed to concurrency

also decreases. In going from 1 processor to 4, the average speed-up is 3.53 with

an efficiency of SS%, while with S processors, the average speed-up is 5.70 with an

efficiency of 7 1 %.

Assigning one element to a block eliminates the benefits of vectorization in the

internal force calculations. The average speed-up achieved for this case using 4 and S

processors was 3.92 and 7.55, yielding efficiencies of 9S% and 94%, respectively. Run

times for one element per block were quite high illustrating the fact that the execution

of vectorized do-loops with only a few loop iterations is slower than performing the

operations in scalar mode.

27

6 Summary of Results

The decrease in efficiency is caused by factors inherent in the design of parallel al-

gorithms. One factor is that processors remain idle when the number of tasks is

smaller than the number of available processors. For example, the internal force cal-

culations for 8 blocks of elements will take the same amount of time as l block of

elements if eight processors are available. In the latter case, seven of the processors

will be idle while the eighth performs the computations. The problem of processor

idleness also illustrates an advantage to using relatively small element blocks (24 to

32 elements/block) as opposed to a few very large blocks. The more blocks that,

are available for computation, the less likely a processor will remain idle. Also, the

larger the problemj the less significant processor idleness becomes. In terms of storage

requirements, smaller block size is also preferable.

Another factor which decreases efficiency is memory contention. If more than

one processor attempts to access a shared memory location simultaneously, an error

will occur. This happens in internal force calculations when two elements in different

blocks share a node. A i 6 1 ~ ~ k 7 7 monitor must be used to ensure that only one processor

will access the memory location at a time. However, the locks may create a slowdown

if substantial interference exists.

Probably the most significant factor for the decreasing efficiency with the number

of processors is the effect of nonparallelizable computations. Once the most time con-

suming computations have been effectively recoded for parallel computations, other

portions of the program require an increasingly larger fraction of the computation

28

time. These sections of the code may not be conducive to parallel execution and will

prevent further speed-up.

To illustrate this effect, the program was divided into three parts: the calculations

performed before, during and after the element internal force computation. The first

part included the calculation of the external force array as well as the update of the

nodal coordinates. The second part was comprised of all calculations listed in step

3 of the flow chart in Section 2.2. The final section included the computation of the

accelerations and the update of the velocity and displacement vectors. The times

required for each section was monitored for the cylindrical panel problem with 24

elements per block and are presented in Table 10 for 1, 4 and S processors. The speed-

up (efficiency) calculated for the internal force calculations was 6.1 (76%), whereas

the speed-up (efficiency) of the computations before and after these calculations was

2.5 (31%) and 4.7 (60%), respectively. The average speed-up and efficiency for the

time step was 5.8 and 73%, respectively. Furthermore, as the number of processors

increase, the percentage of time spent in the internal force calculations decreases

slightly. Therefore, the less efficient coding takes up an increasingly greater percentage

of the total execution time.

29

Table 1: Material Properties and Parameters for Spherical Cap

Radius r =
Thickness t =
Angle C Y =

Density P =
Young's modulus E =
Poisson's ratio v =
Yield stress uy =
Plastic modulus Ep =
Pressure load P =
Time Steps N =

22.27 in
0.41 in
26.67 deg
2.45 x l0-'1b-sec2/in4
1.05 x lo7 psi
0.3
2.4 x lo4 psi
2.1 x IO5 psi
600 psi
1000

Table 2: Solution Times for Spherical Cap Problem

Alliant - WHAMO 310.9 sec
Alliant - WHAM-OPT (8 Procs.) 116.5 sec
Alliant - WHAM-VECPAR (8 Procs.) 28 sec
VAX 11/7SO - WHAiLfO 901.8 sec
IBM 3033 - WHAMO 75 sec

Table 3: Material Properties and Parameters for Containment Vessel

Vessel diameter
Vessel height
Penetration diameter
Penetration length
Thickness
Density
Young's modulus:
Nozzle
Pressure vessel
Collar
Poisson's ratio
Yield stress
Plastic modulus

d, =
h =
d p =

I =
t =
P =

E =
E =
E =
v =
cy =
Ep =

264.0 in
399.0 in
40.0 in
29.3 in
0.25 in
7.5 x 10-41b-sec2/in4

40.0 x lo7 psi
3.0 x lo7 psi
9.0 x IO7 psi
0.3
6.01 x 10" psi
4.4 x 10' psi

30

Table 4: Run Times (Efficiency) for Containment Vessel Problem

Program Number of 12 elements 24 elements 32 elements
Version Processors per block per block per block

WHAMO 1 3768
W H AM-0 PT 8 1291

WHAM-VECPAR 1 1167 959 907
4 356(S1%) 309(7S%) 295(77%)
S 222(66%) 201 (60%) 223(51 %)

Table 5: Parameters for Cylindrical Panel Problem

Density p = 2.5 x 10-41b-sec2/in4
Young’s modulus E = 1.05 x lo7 psi
Poisson’s ratio v = 0.33
Yield stress oy = 4.4 x IO4 psi
Plastic modulus Ep = 0.0 psi

Table 6: Sizes and Time Steps for Mesh Discretizations for Cyl. Panel Problem

Mesh No. Elements No. Nodes Time Step No. Steps
1 96 119 2.OE-6 sec 500
2 3% 429 1.OE-6 sec 1000
3 1536 1625 0.5E-6 sec ‘2000

-

Table 7: Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 1

Program Number of 1 element 12 elements
Version Processors per block per block

WHAMO 1 347
W HAM-0 PT S 141

WHAM-VECPAR 1 529 103
4 137 (97%) 3 1 (83 %)
8 74(S9%) 20(64%)

.

31

Table 8: Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 2

Promam Number of 1 element 12 elements 24 elements 32 elements
Y

Version Processors per block per block per block per block
WHAMO 1 2658

WHAM-OPT 8 1072
WHAMO-VECPAR 1 4189 785 631 594

4 1071(98%) 213(92%) 176(90%) 168(88%)
8 552 (95%) 126(78%) 110(72%) 125(59%)

Table 9: Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 3

Promam Number of 1 element 12 elements 24 elements 32 elements -
Version Processors per block per block per block per block

WHAMO 1 20860
WHAM-OPT 8 8484

WHAMO-VECPAR 1 34495 6030 4807 4496
4 8470(100%) 1671(90%) 1391(86%) 1275(88%)
8 4364(99%) 939(80%) 812(74%) 789(71%)

Table 10: Comparison of Computation Times For a Single Time step

Section 1 Proc. 4 Procs. 8 Procs. Speed-up
Before f int .0032 .0017 .0013 2.46
During f int .5364 .1483 .0883 6.07
After f int .0714 .0224 .0150 4.76

Tot a1 .6110 .1724 .lo46 5.84

Y
t

32

Figure 1: Sample Problem 1: Spherical Cap

33

Figure 2: Sample Problem 2: Containment Vessel with Nozzle Penetration

Figure 3: Sample Problem 3: Impulsively Loaded Panel

34

35

References

[l] Belytschkko, T., Tsay, C. S., “WHAMSE: A Program for Three-Dimensional
Nonlinear Structural Dynamics,” EPRI Report NP-2250, Palo Alto, CA, Febru-
ary 19S2.

[2] Yamada, Y., Yoshimura, N., and Sakurai, T., “Plastic Stress-Strain Matrix and
its Applications for the Solution of Elastic-Plastic Problems by the Finite Ele-
ment Method,” International Journal of Mechanical Sciences, Vol. 10, 1968, pp.
5 6 1-5 78.

[3] Belytschko, T., “Explicit Time Integration of Structural-Mechanical Systems,”
Advanced Structural Dynamics, Donea, J., ed., Applied Science Publishers, Es-
sex, England, 19S0, pp. 97-122.

[4] Flanagan, D. P., and Belytschko, T., “Eigenvalues and Stable Time Steps for the
Uniform Strain Hexahedron and Quadrilateral,’’ Journal of Applied Mechanics,
Vol. 51, March 1984, pp. 35-40.

[5] Belytschko, Ted, and Lin, Jerry, I., “Eigenvalues and Stable Time Steps for the
Bilinear Mindliii Plate Element,” International Journal for Numerical Methods
in Engineering, Vol. 21, 1985, pp. 1729-1745.

[6] NCSA Training Information

[7] Hughes, Thomas J. R., Ferencz, Robert M., and Hallquist, John O., “Large-Scale
Vectorized Implicit Calculations in Solid Mechanics on a CRAY X-MP/48 Uti-
lizing EBE Preconditioned Conjugate Gradients,” Computer Methods in Applied
Mechanics and Engineering, Vol. 61, 1987, pp. 215-248.

[SI Kennedy, J. M., Belytschko, T., and Lin, J. I., “Recent Developments in Ex-
plicit Finite Element Techniques and Their Application to Reactor Structures,”
Nuclear Engineering and Design, Vol. 97, 1986, pp. 1-24.

